This document is an attempt to reproduce some of the charts shown in Observable Plot documentation notebooks.
As always, there are several ways to do things, in particular data
manipulation could be done either in R before plotting, or in JavaScript
via transforms and JS()
calls. Each example below is one
way to achieve a given result, not necessarily the best one or the most
elegant.
data(aapl)
obsplot(aapl) |>
mark_areaY(x = Date, y = Close, fill = "#ccc") |>
mark_lineY(x = Date, y = Close) |>
mark_ruleY(y = 0) |>
scale_y(grid = TRUE)
data(sftemp)
obsplot(sftemp) |>
mark_ruleY(y = 32) |>
mark_areaY(
transform_windowY(
x = date,
y1 = low, y2 = high,
fill = "#ccc", k = 14
)
) |>
mark_line(
transform_windowY(
x = date,
y = JS("d => (d.low + d.high) / 2"),
k = 14
)
) |>
scale_y(grid = TRUE, label = "↑ Temperature (°F)")
data(civilizations)
obsplot(civilizations, height = nrow(civilizations) * 12) |>
mark_barX(x1 = start, x2 = end, y = civilization) |>
mark_text(
x = start, y = civilization, text = civilization,
textAnchor = "end", dx = -6
) |>
opts(marginLeft = 140) |>
scale_x(axis = "top", grid = TRUE) |>
scale_y(axis = NULL, domain = civilizations$civilization[order(civilizations$start)])
data(popchange)
popchange$diff <- (popchange$`2019` - popchange$`2010`) / popchange$`2010` * 100
popchange$up <- popchange$diff >= 0
obsplot(popchange, height = 780) |>
mark_barX(y = State, x = diff, fill = up) |>
mark_ruleX(x = 0) |>
opts(marginLeft = 110, grid = TRUE) |>
scale_x(
axis = "top", round = TRUE,
label = "← decrease · Change in population, 2010–2019 (%) · increase →",
labelAnchor = "center", tickFormat = "+"
) |>
scale_y(label = NULL, domain = popchange$State[order(popchange$diff)], reverse = TRUE) |>
scale_color(range = c("#e15759", "#4e79a7"))
data(alphabet)
obsplot(alphabet, height = 60) |>
mark_ruleX(c(0,1)) |>
mark_barX(
transform_stackX(order = letter, x = frequency, fill = "#ccc", insetLeft = 1)
) |>
mark_textX(
transform_stackX(order = letter, x = frequency, text = "letter", insetLeft = 1)
) |>
scale_x(label = "Frequency (%)", transform = JS("d => d * 100"))
data(stateage)
# Precompute state names order
library(dplyr)
states <- stateage |>
group_by(name) |>
summarize(total = sum(population)) |>
arrange(desc(total)) |>
slice(1:6) |>
pull(name)
obsplot(stateage) |>
mark_barY(x = age, y = population, fill = age, title = age) |>
mark_ruleY(y = 0) |>
facet(x = name) |>
scale_x(axis = NULL, domain = unique(stateage$age)) |>
scale_fx(domain = states, label = NULL, tickSize = 6) |>
scale_y(grid = TRUE, tickFormat = "s") |>
scale_color(domain = unique(stateage$age), scheme = "spectral")
obsplot(simpsons, height = 600) |>
mark_cell(x = season, y = number_in_season, fill = imdb_rating) |>
mark_text(x = season, y = number_in_season, text = imdb_rating, title = title) |>
scale_x(axis = "top", label = "Season") |>
scale_y(label = "Episode") |>
scale_color(scheme = "PiYg") |>
opts(padding = 0.05, grid = TRUE)
data(dji)
# precompute variables
dji <- dji |>
mutate(
variation = (Close - lag(Close)) / lag(Close),
title = round(variation * 100, 1)
)
obsplot(dji, height = 1300) |>
mark_cell(
x = JS("d => d3.utcWeek.count(d3.utcYear(d.Date), d.Date)"),
y = JS("d => d.Date.getUTCDay()"),
fill = variation,
title = title,
inset = 0.5
) |>
facet(y = JS("d => d.Date.getUTCFullYear()")) |>
scale_x(axis = NULL, padding = 0) |>
scale_y(
padding = 0, tickSize = 0,
tickFormat = JS('Plot.formatWeekday("en", "narrow")')
) |>
scale_fy(reverse = TRUE, label = NULL) |>
scale_color(type = "diverging", scheme = "PiYg")
data(seattle)
obsplot(seattle, height = 300) |>
mark_cell(
transform_group(
list(fill = "max"),
x = JS("d => d.date.getUTCDate()"),
y = JS("d => d.date.getUTCMonth()"),
fill = temp_max,
inset = 0.5
)
) |>
scale_y(
tickFormat = JS('Plot.formatMonth("en", "short")')
) |>
opts(padding = 0)
df <- simpsons |>
mutate(tick = season * 100 + number_in_season - 1)
obsplot(df, height = 60) |>
mark_cell(x = tick, fill = imdb_rating) |>
scale_x(
ticks = df |> filter(number_in_season == 1) |> pull(tick),
tickFormat = JS("d => d / 100"),
round = FALSE, label = "Season →", labelAnchor = "right"
) |>
scale_color(scheme = "PiYg")
data(gistemp)
obsplot(gistemp) |>
mark_ruleY(y = 0) |>
mark_dot(x = Date, y = Anomaly, stroke = Anomaly) |>
scale_y(tickFormat = "+f", grid = TRUE) |>
scale_color(type = "diverging", scheme = "BuRd")
data(aapl)
obsplot(aapl) |>
mark_ruleX(0) |>
mark_dot(
x = JS("d => (d.Close - d.Open) / d.Open"),
y = Volume, r = Volume
) |>
scale_x(
label = "Daily change (%) →",
tickFormat = "+f", transform = JS("d => d * 100")
) |>
scale_y(
label = "↑ Daily trading volume",
type = "log", tickFormat = "~s"
) |>
opts(grid = TRUE)
data(diamonds_obs)
obsplot(diamonds_obs, height = 480) |>
mark_dot(
transform_bin(r = "count", x = carat, y = price, thresholds = 100)
) |>
scale_x(label = "Carats →") |>
scale_y(label = "↑ Price ($)") |>
scale_r(range = c(0, 20)) |>
opts(grid = TRUE)
data(driving)
# filter out highlighted data beforehand
driv5 <- driving |> filter(year %% 5 == 0)
obsplot(driving) |>
mark_line(x = miles, y = gas, curve = "catmull-rom") |>
mark_dot(x = miles, y = gas, fill = "currentColor") |>
mark_text(driv5, x = miles, y = gas, text = year, dy = -8) |>
opts(grid = TRUE)
data(alphabet)
obsplot(alphabet) |>
mark_ruleY(y = 0) |>
mark_ruleX(x = letter, y = frequency) |>
mark_dot(x = letter, y = frequency, fill = "black", r = 4) |>
scale_x(label = NULL, tickSize = 0) |>
scale_y(transform = JS("d => d * 100"), label = "↑ Frequency (%)")
data(stateage)
xy <- transform_normalizeY(basis = "sum", z = "name", x = "age", y = "population")
obsplot(stateage) |>
mark_ruleY(y = 0) |>
mark_line(xy, strokeWidth = 1, stroke = "#ccc") |>
mark_dot(xy) |>
scale_x(domain = unique(stateage$age), labelAnchor = "right") |>
scale_y(transform = JS("d => d*100")) |>
opts(grid = TRUE)
xy <- transform_normalizeX(basis = "sum", z = "name", x = "population", y = "name")
obsplot(stateage, height = 660) |>
mark_ruleX(x = 0) |>
mark_ruleY(
transform_groupY(list(x1 = "min", x2 = "max"), xy)
) |>
mark_dot(xy, fill = age, title = age) |>
mark_text(
transform_selectMinX(xy), textAnchor = "end", dx = -6, text = name
) |>
scale_x(axis = "top", label = "Percent (%) →", transform = JS("d => d * 100")) |>
scale_y(axis = NULL) |>
scale_color(scheme = "spectral", domain = unique(stateage$age)) |>
opts(grid = TRUE)
data(metros)
# Compute the difference first
metros$diff1580 <- metros$R90_10_2015 - metros$R90_10_1980
obsplot(metros) |>
mark_link(
x1 = POP_1980, y1 = R90_10_1980,
x2 = POP_2015, y2 = R90_10_2015, stroke = diff1580
) |>
mark_dot(x = POP_2015, y = R90_10_2015, r = 1) |>
mark_text(
x = POP_2015, y = R90_10_2015,
filter = highlight, text = nyt_display, dy = -6
) |>
scale_x(type = "log", tickFormat = "~s") |>
scale_color(type = "diverging", reverse = TRUE) |>
opts(grid = TRUE)
data(income)
# Compute min and max values first
imin <- min(c(income$m, income$f), na.rm = TRUE)
imax <- max(c(income$m, income$f), na.rm = TRUE)
qs <- c(.6, .7, .8, .9, 1)
obsplot(height = 600) |>
mark_link(x1 = imin, y1 = imin, x2 = imax, y2 = imax) |>
mark_link(
x1 = imin, y1 = imin * qs, x2 = imax, y2 = imax * qs,
strokeOpacity = ifelse(qs == 1, 1, 0.2)
) |>
mark_text(
x = imax, y = qs * imax, textAnchor = "start", dx = 6,
text = ifelse(qs == 1, "Equal", qs)
) |>
mark_dot(income, x = m, y = f, title = paste(income$type, income$age)) |>
opts(marginRight = 40) |>
scale_x(
label = "Median annual income (men, thousands) →",
tickFormat = JS("d => d / 1000")
) |>
scale_y(
label = "↑ Median annual income (women, thousands)",
tickFormat = JS("d => d / 1000")
)
data(bls_unemployment)
obsplot(bls_unemployment) |>
mark_ruleY(y = 0) |>
mark_line(x = date, y = unemployment, z = division) |>
scale_y(grid = TRUE, label = "↑ Unemployment (%)")
data(stocks)
obsplot(stocks) |>
mark_ruleY(1) |>
mark_line(
transform_normalizeY(x = Date, y = Close, stroke = Symbol)
) |>
mark_text(
transform_selectLast(
transform_normalizeY(
x = Date, y = Close, stroke = Symbol,
text = Symbol, textAnchor = "start", dx = 3
)
)
) |>
scale_y(
type = "log", grid = TRUE, label = "↑ Change in price (%)",
tickFormat = JS("x => d3.format('+d')((x - 1) * 100)")
) |>
style(overflow = "visible")
data(bls_unemployment)
obsplot(bls_unemployment) |>
mark_ruleY(0) |>
mark_line(
x = date, y = unemployment, z = division, stroke = unemployment
) |>
scale_y(grid = TRUE, label = "↑ Unemployment (%)")
data(bls_unemployment)
bls_unemployment$highlight <- grepl(", MI ", bls_unemployment$division)
obsplot(bls_unemployment) |>
mark_ruleY(0) |>
mark_line(
x = date, y = unemployment, z = division,
stroke = highlight, sort = highlight
) |>
scale_y(grid = TRUE, label = "↑ Unemployment (%)") |>
scale_color(domain = c(FALSE, TRUE), range = c("#CCC", "red"))
data(aapl)
obsplot(aapl) |>
mark_rectY(
transform_binX(
y = "count", x = JS("d => Math.log10(d.Volume)"), normalize = TRUE
)
) |>
mark_ruleY(0) |>
scale_x(round = TRUE, label = "Trade volume (log₁₀) →") |>
scale_y(grid = TRUE)
data(povcalnet)
obsplot(povcalnet) |>
mark_rectY(
transform_stackX(
filter = JS("d => ['N', 'A'].includes(d.CoverageType)"),
x = ReqYearPopulation,
order = HeadCount,
reverse = TRUE,
y2 = HeadCount,
title = JS("d => `${d.CountryName}\n${(d.HeadCount * 100).toFixed(1)}%`"),
insetLeft = 0.2,
insetRight = 0.2
)
) |>
scale_x(label = "Population (millions) →") |>
scale_y(
label = "↑ Proportion living on less than $30 per day (%)",
transform = JS("d => d * 100"),
grid = TRUE
)
obsplot(height = 60) |>
mark_ruleX(data = list(length = 500), x = JS("d3.randomNormal()"), strokeOpacity = 0.2) |>
scale_x(domain = c(-4, 4))
data(seattle)
obsplot(seattle) |>
mark_ruleY(0) |>
mark_ruleX(x = date, y1 = temp_min, y2 = temp_max, stroke = temp_max) |>
scale_color(scheme = "BuRd") |>
scale_y(
grid = TRUE, label = "↑ Temperature (°F)",
transform = JS("d => d * 9 / 5 + 32")
)
data(aapl)
aapl120 <- tail(aapl, 120)
obsplot(aapl120) |>
mark_ruleX(x = Date, strokeOpacity = 0.1) |>
mark_ruleX(x = Date, y1 = Low, y2 = High) |>
mark_ruleX(
x = Date, y1 = Open, y2 = Close,
stroke = JS("d => Math.sign(d.Close - d.Open)"),
strokeWidth = 4,
strokeLinecap = "round"
) |>
scale_x(label = NULL) |>
scale_y(grid = TRUE, label = "↑ Stock price ($)") |>
scale_color(range = c("#e41a1c", "#000000", "#4daf4a")) |>
opts(inset = 6)
data(simpsons)
obsplot(simpsons) |>
mark_ruleX(
transform_groupX(
list(y1 = "min", y2 = "max"),
x = season, y = imdb_rating
)
) |>
mark_line(
transform_groupX(
y = "median",
x = season, y = imdb_rating, stroke = "red"
)
) |>
mark_dot(x = season, y = imdb_rating) |>
scale_x(type = "point", label = "Season →", labelAnchor = "right") |>
scale_y(label = "↑ IMDb rating")
data(alphabet)
obsplot(alphabet) |>
mark_barY(x = letter, y = frequency) |>
mark_text(
x = letter, y = frequency,
text = JS("d => (d.frequency * 100).toFixed(1)"), dy = -5
) |>
mark_ruleY(0) |>
scale_x(label = NULL) |>
scale_y(grid = TRUE, label = "↑ Frequency (%)", transform = JS("d => d * 100"))
In the following example, the text
channels passed to
mark_text
are not data column names but explicit values. In
Observable Plot this is done by setting to an array
(text: ["2019"]
). In obsplot
, we use the
helper function as_data
to achieve the same goal.
data(travelers)
last_traveler <- head(travelers, 1)
obsplot(travelers) |>
mark_ruleY(0) |>
mark_line(x = date, y = previous, stroke = "#bab0ab") |>
mark_line(x = date, y = current) |>
mark_text(
last_traveler, x = date, y = previous,
fill = "#8a817c", text = as_data("2019"), dy = "-0.5em"
) |>
mark_text(
last_traveler, x = date, y = current,
text = as_data("2020"), dy = "1.2em"
) |>
scale_y(
grid = TRUE, nice = TRUE, label = "↑ Travelers per day (millions)",
transform = JS("d => d / 1e6")
)
library(stringr)
data(caltrain)
north <- subset(caltrain, orientation == "N")
south <- subset(caltrain, orientation == "S")
obsplot(caltrain, height = 480, width = 240) |>
mark_text(x = 1, y = 3, text = as_data("Northbound"), textAnchor = "start") |>
mark_text(x = -1, y = 3, text = as_data("Southbound"), textAnchor = "end") |>
mark_text(
unique(caltrain$hours), x = 0, y = JS("d => d"),
text = JS('d => `${(d - 1) % 12 + 1}${(d % 24) >= 12 ? "p": "a"}`')
) |>
mark_text(
north,
transform_stackX2(
x = 1,
y = hours,
text = str_pad(north$minutes, 2, side = "left", pad = 0),
title = paste(north$time, north$line),
fill = type,
textAnchor = "start"
)
) |>
mark_text(
south,
transform_stackX2(
x = -1,
y = hours,
text = str_pad(south$minutes, 2, side = "left", pad = 0),
title = paste(north$time, north$line),
fill = type,
textAnchor = "end"
)
) |>
mark_ruleX(c(-.5, .5)) |>
scale_x(axis = NULL) |>
scale_y(domain = 3:26, axis = NULL) |>
scale_color(domain = "NLB", range = c("currentColor", "peru", "brown"))
data(stateage)
obsplot(stateage, height = 300) |>
mark_ruleX(0) |>
mark_tickX(
transform_normalizeX(basis = "sum", z = name, x = population, y = age)
) |>
scale_x(axis = "top", label = "Percent (%) →", transform = JS("d => d*100")) |>
scale_y(domain = unique(stateage$age), label = "Age") |>
opts(marginLeft = 50, grid = TRUE)
obsplot(height = 60) |>
mark_tickX(list(length = 500), x = JS("d3.randomNormal()"), strokeOpacity = 0.2) |>
scale_x(domain = c(-4, 4))
data(morley)
obsplot(morley, height = 150) |>
mark_ruleY(
transform_groupY(
list(
x1 = JS('V => Math.max(d3.min(V), d3.quantile(V, 0.25) * 2.5 - d3.quantile(V, 0.75) * 1.5)'),
x2 = JS('V => Math.min(d3.max(V), d3.quantile(V, 0.75) * 2.5 - d3.quantile(V, 0.25) * 1.5)')
),
x = Speed, y = Expt
)
) |>
mark_barX(
transform_groupY(
list(
x1 = JS('V => d3.quantile(V, 0.25)'),
x2 = JS('V => d3.quantile(V, 0.75)')
),
x = Speed, y = Expt, fill = "#ccc"
)
) |>
mark_tickX(
transform_groupY(
list(x = JS('d3.median')),
x = Speed, y = Expt, strokeWidth = 2
)
) |>
scale_x(grid = TRUE, inset = 6)