Title: | Interactive Interfaces for Results Exploration |
---|---|
Description: | Shiny interfaces and graphical functions for multivariate analysis results exploration. |
Authors: | Julien Barnier [aut, cre] |
Maintainer: | Julien Barnier <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.3.10.9000 |
Built: | 2024-11-01 05:56:13 UTC |
Source: | https://github.com/juba/explor |
This function generates an HTML widget displaying the variables plot of a CA result.
CA_var_plot( res, xax = 1, yax = 2, lev_sup = TRUE, var_sup = TRUE, var_sup_choice = NULL, var_hide = "None", var_lab_min_contrib = 0, point_size = 64, col_var = NULL, symbol_var = NULL, size_var = NULL, size_range = c(10, 300), zoom_callback = NULL, in_explor = FALSE, ... )
CA_var_plot( res, xax = 1, yax = 2, lev_sup = TRUE, var_sup = TRUE, var_sup_choice = NULL, var_hide = "None", var_lab_min_contrib = 0, point_size = 64, col_var = NULL, symbol_var = NULL, size_var = NULL, size_range = c(10, 300), zoom_callback = NULL, in_explor = FALSE, ... )
res |
Result of prepare_results() call |
xax |
Horizontal axis number |
yax |
Vertical axis number |
lev_sup |
TRUE to display supplementary levels |
var_sup |
TRUE to display supplementary variables |
var_sup_choice |
list of supplementary variables to display |
var_hide |
elements to hide (rows or columns) |
var_lab_min_contrib |
Contribution threshold to display points labels |
point_size |
base point size |
col_var |
name of the variable for points color |
symbol_var |
name of the variable for points symbol |
size_var |
name of the variable for points size |
size_range |
points size range with format c(minimum, maximum) |
zoom_callback |
scatterD3 zoom callback JavaScript body |
in_explor |
wether the plot is to be displayed in the |
... |
Other arguments passed to scatterD3 |
This function launches a shiny app in a web browser in order to do interactive visualisation and exploration of an analysis results.
explor(obj) ## S3 method for class 'CA' explor(obj) ## S3 method for class 'textmodel_ca' explor(obj) ## S3 method for class 'coa' explor(obj) ## S3 method for class 'MCA' explor(obj) ## S3 method for class 'speMCA' explor(obj) ## S3 method for class 'mca' explor(obj) ## S3 method for class 'acm' explor(obj) ## S3 method for class 'PCA' explor(obj) ## S3 method for class 'princomp' explor(obj) ## S3 method for class 'prcomp' explor(obj) ## S3 method for class 'pca' explor(obj)
explor(obj) ## S3 method for class 'CA' explor(obj) ## S3 method for class 'textmodel_ca' explor(obj) ## S3 method for class 'coa' explor(obj) ## S3 method for class 'MCA' explor(obj) ## S3 method for class 'speMCA' explor(obj) ## S3 method for class 'mca' explor(obj) ## S3 method for class 'acm' explor(obj) ## S3 method for class 'PCA' explor(obj) ## S3 method for class 'princomp' explor(obj) ## S3 method for class 'prcomp' explor(obj) ## S3 method for class 'pca' explor(obj)
obj |
object containing analysis results |
If you want to display supplementary individuals or variables and you're using
the dudi.coa
function, you can add the coordinates of
suprow
and/or supcol
to as supr
and/or
supr
elements added to your dudi.coa
result (See example).
If you want to display supplementary individuals or variables and you're using
the dudi.acm
function, you can add the coordinates of
suprow
and/or supcol
to as supi
and/or
supv
elements added to your dudi.acm
result (See example).
If you want to display supplementary individuals or variables and you're using
the dudi.pca
function, you can add the coordinates of
suprow
and/or supcol
to as supi
and/or
supv
elements added to your dudi.pca
result (See example).
The function launches a shiny app in the system web browser.
## Not run: require(FactoMineR) ## FactoMineR::MCA exploration data(hobbies) mca <- MCA(hobbies[1:1000,c(1:8,21:23)], quali.sup = 9:10, quanti.sup = 11, ind.sup = 1:100, graph = FALSE) explor(mca) ## FactoMineR::PCA exploration data(decathlon) d <- decathlon[,1:12] pca <- PCA(d, quanti.sup = 11:12, graph = FALSE) explor(pca) ## End(Not run) ## Not run: library(ade4) data(bordeaux) tab <- bordeaux row_sup <- tab[5,-4] col_sup <- tab[-5,4] coa <- dudi.coa(tab[-5,-4], nf = 5, scannf = FALSE) coa$supr <- suprow(coa, row_sup) coa$supc <- supcol(coa, col_sup) explor(coa) ## End(Not run) ## Not run: library(ade4) data(banque) d <- banque[-(1:100),-(19:21)] ind_sup <- banque[1:100, -(19:21)] var_sup <- banque[-(1:100),19:21] acm <- dudi.acm(d, scannf = FALSE, nf = 5) acm$supv <- supcol(acm, dudi.acm(var_sup, scannf = FALSE, nf = 5)$tab) colw <- acm$cw*ncol(d) X <- acm.disjonctif(ind_sup) X <- data.frame(t(t(X)/colw) - 1) acm$supi <- suprow(acm, X) explor(acm) ## End(Not run) ## Not run: library(ade4) data(deug) d <- deug$tab sup_var <- d[-(1:10), 8:9] sup_ind <- d[1:10, -(8:9)] pca <- dudi.pca(d[-(1:10), -(8:9)], scale = TRUE, scannf = FALSE, nf = 5) supi <- suprow(pca, sup_ind) pca$supi <- supi supv <- supcol(pca, dudi.pca(sup_var, scale = TRUE, scannf = FALSE)$tab) pca$supv <- supv explor(pca) ## End(Not run)
## Not run: require(FactoMineR) ## FactoMineR::MCA exploration data(hobbies) mca <- MCA(hobbies[1:1000,c(1:8,21:23)], quali.sup = 9:10, quanti.sup = 11, ind.sup = 1:100, graph = FALSE) explor(mca) ## FactoMineR::PCA exploration data(decathlon) d <- decathlon[,1:12] pca <- PCA(d, quanti.sup = 11:12, graph = FALSE) explor(pca) ## End(Not run) ## Not run: library(ade4) data(bordeaux) tab <- bordeaux row_sup <- tab[5,-4] col_sup <- tab[-5,4] coa <- dudi.coa(tab[-5,-4], nf = 5, scannf = FALSE) coa$supr <- suprow(coa, row_sup) coa$supc <- supcol(coa, col_sup) explor(coa) ## End(Not run) ## Not run: library(ade4) data(banque) d <- banque[-(1:100),-(19:21)] ind_sup <- banque[1:100, -(19:21)] var_sup <- banque[-(1:100),19:21] acm <- dudi.acm(d, scannf = FALSE, nf = 5) acm$supv <- supcol(acm, dudi.acm(var_sup, scannf = FALSE, nf = 5)$tab) colw <- acm$cw*ncol(d) X <- acm.disjonctif(ind_sup) X <- data.frame(t(t(X)/colw) - 1) acm$supi <- suprow(acm, X) explor(acm) ## End(Not run) ## Not run: library(ade4) data(deug) d <- deug$tab sup_var <- d[-(1:10), 8:9] sup_ind <- d[1:10, -(8:9)] pca <- dudi.pca(d[-(1:10), -(8:9)], scale = TRUE, scannf = FALSE, nf = 5) supi <- suprow(pca, sup_ind) pca$supi <- supi supv <- supcol(pca, dudi.pca(sup_var, scale = TRUE, scannf = FALSE)$tab) pca$supv <- supv explor(pca) ## End(Not run)
This function displays a graphical representation of the individuals (rows) of a multivariate analysis.
This function displays a graphical representation of the individuals
(rows) of a multiple correspondence analysis generated by the MCA
function of the FactoMineR
package.
ggind(obj, ...) ## S3 method for class 'MCA' ggind( obj, xax = 1, yax = 2, fac = NA, label = NULL, alpha = 0.5, palette = "Set1", ... )
ggind(obj, ...) ## S3 method for class 'MCA' ggind( obj, xax = 1, yax = 2, fac = NA, label = NULL, alpha = 0.5, palette = "Set1", ... )
obj |
a multivariate analysis results object. Currently only MCA is supported |
... |
arguments passed to other methods |
xax |
number of the x axis |
yax |
number of the y axis |
fac |
an optional factor by which points are colored, and confidence ellipses drawn |
label |
legend title |
alpha |
points opacity |
palette |
palette for points coloring, if |
This function displays a graphical representation of the variables (columns) of a multivariate analysis.
This function displays a graphical representation of the variables
(columns) of a multiple correspondence analysis generated by the MCA
function of the FactoMineR
package.
ggvar(obj, ...) ## S3 method for class 'MCA' ggvar(obj, xax = 1, yax = 2, size = 4, alpha = 0.5, palette = "Set1", ...)
ggvar(obj, ...) ## S3 method for class 'MCA' ggvar(obj, xax = 1, yax = 2, size = 4, alpha = 0.5, palette = "Set1", ...)
obj |
a multivariate analysis results object. Currently only MCA is supported |
... |
arguments passed to other methods |
xax |
number of the x axis |
yax |
number of the y axis |
size |
text size |
alpha |
points opacity |
palette |
palette for variables coloring |
This function generates an HTML widget displaying the variables plot of an MCA result.
MCA_biplot( res, xax = 1, yax = 2, col_var, ind_sup = TRUE, var_sup = TRUE, bi_lab_min_contrib = 0, symbol_var = NULL, ind_point_size = 16, var_point_size = 96, ind_opacity = 0.5, ind_opacity_var = NULL, ind_labels = FALSE, zoom_callback = NULL, in_explor = FALSE, ... )
MCA_biplot( res, xax = 1, yax = 2, col_var, ind_sup = TRUE, var_sup = TRUE, bi_lab_min_contrib = 0, symbol_var = NULL, ind_point_size = 16, var_point_size = 96, ind_opacity = 0.5, ind_opacity_var = NULL, ind_labels = FALSE, zoom_callback = NULL, in_explor = FALSE, ... )
res |
Result of prepare_results() call |
xax |
Horizontal axis number |
yax |
Vertical axis number |
col_var |
name of the variable for points color |
ind_sup |
TRUE to display supplementary individuals |
var_sup |
TRUE to display supplementary variables |
bi_lab_min_contrib |
Contribution threshold to display points labels |
symbol_var |
name of the variable for points symbol |
ind_point_size |
base point size for individuals |
var_point_size |
base point size for variable levels |
ind_opacity |
individuals point opacity (constant) |
ind_opacity_var |
individuals point opacity (variable) |
ind_labels |
TRUE to display individuals labels |
zoom_callback |
scatterD3 zoom callback JavaScript body |
in_explor |
wether the plot is to be displayed in the |
... |
Other arguments passed to scatterD3 |
This function generates an HTML widget displaying the individuals plot of an MCA result.
MCA_ind_plot( res, xax = 1, yax = 2, ind_sup = TRUE, ind_lab_min_contrib = 0, lab_var = NULL, col_var = NULL, symbol_var = NULL, opacity_var = NULL, size_var = NULL, size_range = c(10, 300), zoom_callback = NULL, in_explor = FALSE, ... )
MCA_ind_plot( res, xax = 1, yax = 2, ind_sup = TRUE, ind_lab_min_contrib = 0, lab_var = NULL, col_var = NULL, symbol_var = NULL, opacity_var = NULL, size_var = NULL, size_range = c(10, 300), zoom_callback = NULL, in_explor = FALSE, ... )
res |
Result of prepare_results() call |
xax |
Horizontal axis number |
yax |
Vertical axis number |
ind_sup |
TRUE to display supplementary individuals |
ind_lab_min_contrib |
Contribution threshold to display points labels |
lab_var |
variable to be used for points names |
col_var |
variable to be used for points color |
symbol_var |
name of the variable for points symbol |
opacity_var |
name of the variable for points opacity |
size_var |
name of the variable for points size |
size_range |
points size range with format c(minimum, maximum) |
zoom_callback |
scatterD3 zoom callback JavaScript body |
in_explor |
wether the plot is to be displayed in the |
... |
Other arguments passed to scatterD3 |
This function generates an HTML widget displaying the variables plot of an MCA result.
MCA_var_plot( res, xax = 1, yax = 2, var_sup = TRUE, var_sup_choice = NULL, var_lab_min_contrib = 0, point_size = 64, labels_prepend_var = FALSE, col_var = NULL, symbol_var = NULL, size_var = NULL, size_range = c(10, 300), zoom_callback = NULL, in_explor = FALSE, ... )
MCA_var_plot( res, xax = 1, yax = 2, var_sup = TRUE, var_sup_choice = NULL, var_lab_min_contrib = 0, point_size = 64, labels_prepend_var = FALSE, col_var = NULL, symbol_var = NULL, size_var = NULL, size_range = c(10, 300), zoom_callback = NULL, in_explor = FALSE, ... )
res |
Result of prepare_results() call |
xax |
Horizontal axis number |
yax |
Vertical axis number |
var_sup |
TRUE to display supplementary variables |
var_sup_choice |
list of supplementary variables to display |
var_lab_min_contrib |
Contribution threshold to display points labels |
point_size |
base point size |
labels_prepend_var |
if TRUE, prepend variable names to labels |
col_var |
name of the variable for points color |
symbol_var |
name of the variable for points symbol |
size_var |
name of the variable for points size |
size_range |
points size range with format c(minimum, maximum) |
zoom_callback |
scatterD3 zoom callback JavaScript body |
in_explor |
wether the plot is to be displayed in the |
... |
Other arguments passed to scatterD3 |
This function generates an HTML widget displaying the individuals plot of a PCA result.
PCA_ind_plot( res, xax = 1, yax = 2, ind_sup = TRUE, ind_lab_min_contrib = 0, col_var = NULL, symbol_var = NULL, opacity_var = NULL, size_var = NULL, size_range = c(10, 300), lab_var = NULL, zoom_callback = NULL, in_explor = FALSE, ... )
PCA_ind_plot( res, xax = 1, yax = 2, ind_sup = TRUE, ind_lab_min_contrib = 0, col_var = NULL, symbol_var = NULL, opacity_var = NULL, size_var = NULL, size_range = c(10, 300), lab_var = NULL, zoom_callback = NULL, in_explor = FALSE, ... )
res |
Result of prepare_results() call |
xax |
Horizontal axis number |
yax |
Vertical axis number |
ind_sup |
TRUE to display supplementary individuals |
ind_lab_min_contrib |
Contribution threshold to display points labels |
col_var |
variable to be used for points color |
symbol_var |
name of the variable for points symbol |
opacity_var |
name of the variable for points opacity |
size_var |
name of the variable for points size |
size_range |
points size range with format c(minimum, maximum) |
lab_var |
variable to be used for points names |
zoom_callback |
scatterD3 zoom callback JavaScript body |
in_explor |
wether the plot is to be displayed in the |
... |
Other arguments passed to scatterD3 |
This function generates an HTML widget displaying the variables plot of a PCA result.
PCA_var_plot( res, xax = 1, yax = 2, var_sup = TRUE, var_sup_choice = NULL, var_lab_min_contrib = 0, scale_unit = FALSE, col_var = NULL, size_var = NULL, zoom_callback = NULL, in_explor = FALSE, xlim = NULL, ylim = NULL, ... )
PCA_var_plot( res, xax = 1, yax = 2, var_sup = TRUE, var_sup_choice = NULL, var_lab_min_contrib = 0, scale_unit = FALSE, col_var = NULL, size_var = NULL, zoom_callback = NULL, in_explor = FALSE, xlim = NULL, ylim = NULL, ... )
res |
Result of prepare_results() call |
xax |
Horizontal axis number |
yax |
Vertical axis number |
var_sup |
TRUE to display supplementary variables |
var_sup_choice |
list of supplementary variables to display |
var_lab_min_contrib |
Contribution threshold to display points labels |
scale_unit |
wether the PCA is scaled |
col_var |
name of the variable for points color |
size_var |
name of the variable for points size |
zoom_callback |
scatterD3 zoom callback JavaScript body |
in_explor |
wether the plot is to be displayed in the |
xlim |
custom x axis limits |
ylim |
custom y axis limits |
... |
Other arguments passed to scatterD3 |
This function prepares results to be used by explor
. Not to be used directly.
prepare_results(obj) ## S3 method for class 'CA' prepare_results(obj) ## S3 method for class 'mca' prepare_results(obj) ## S3 method for class 'MCA' prepare_results(obj) ## S3 method for class 'PCA' prepare_results(obj) ## S3 method for class 'coa' prepare_results(obj) ## S3 method for class 'acm' prepare_results(obj) ## S3 method for class 'pca' prepare_results(obj) ## S3 method for class 'prcomp' prepare_results(obj) ## S3 method for class 'princomp' prepare_results(obj) ## S3 method for class 'speMCA' prepare_results(obj) ## S3 method for class 'textmodel_ca' prepare_results(obj)
prepare_results(obj) ## S3 method for class 'CA' prepare_results(obj) ## S3 method for class 'mca' prepare_results(obj) ## S3 method for class 'MCA' prepare_results(obj) ## S3 method for class 'PCA' prepare_results(obj) ## S3 method for class 'coa' prepare_results(obj) ## S3 method for class 'acm' prepare_results(obj) ## S3 method for class 'pca' prepare_results(obj) ## S3 method for class 'prcomp' prepare_results(obj) ## S3 method for class 'princomp' prepare_results(obj) ## S3 method for class 'speMCA' prepare_results(obj) ## S3 method for class 'textmodel_ca' prepare_results(obj)
obj |
object containing analysis results |
Compute supplementary variables data for a GDAtools::speMCA result
speMCA_varsup(mca, df)
speMCA_varsup(mca, df)
mca |
result object from speMCA. |
df |
data frame with the supplementary variables data. Must have the same number of rows than the data used with speMCA. |
A list of results suitable to be added as a 'supv' element to the 'mca' object.